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The maximal quantity in the proposed theory is cr Ic = k, + k2, and is generally depen- 
dent on the cosine of the angle between the vectors egj‘ and de*!‘. The relationships of 
classical ideal plasticity theory occur from (3.11) in the particular case with kl = 0, 

kz # 0 , and of deformation ideal plasticity theory for k1 # 0, ka = 0. 
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A method is indicated for constructing the equations of motion of free systems of mate- 

rial points connected to each other by inertialess elastic constraints. The system config- 

uration is arbitrary. and any arbitrarily time-dependent external forces are applied to 
the material points. 

1. Rigid ryatem. Let us assume that there are N material points in the system. 
Let mt denote the mass of the i th point, M the sum of all the masses so that 

M = C”f$ (1.1) 

Here, as everywhere below, the symbol Z denotes summation over all material points 
of the system, i. e. over i between 1 and N. 

We call a system for which the deformations of the elastic constraints are zero - a 

rigid system. If the constraints are absolutely rigid, the rigid system is substantially an 

absolutely rigid body. 
Let us refer the rigid system to fixed Cartesian coordinates with the unit vectors e,O 

(i = i ,2,3), and also to moving coordinates with ej (i = 1,2,3) directed along the prin- 
cipal central axes of inertia of the rigid system. If Pi09 pco are radius-vectors of the rtil 

point and the center of mass of the rigid system relative to the origin of the fixed coor- 

dinates, and pi = zilel + xi%2 + zi3ea (1.2) 

is the radius-vector of the i th point of a rigid system relative to its center of mass, then 

Pi’ = Pc” + Pi 

By the definition of the center of mass 

fi ‘3) 
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Zmipi =O (1.4) 

2. Elrrtlc dl8placemtnt8. In contrast to an attached system, the elastic dis- 
placements in a free system can be introduced differently. For example, the elastic dis- 

placement uj can be defined as the deviation of the i th point from its position in a rigid 

system which is fixed or moving according to the given law 

‘i” = PC’ + P4 + ‘4 (2.1) 

Here r4’ is the radius-vector of the ith point of an elastic system, 

However, it is more expedient to define the elastic displacement Vi of the i th point 

as its deviation from the position in the rigid system whose position in space is ~known 
in advance, and to impose two homogeneous vector conditions simultaneo~ly on V4 

Zmi Vi = 0, ZmirixVi = 0 (2.2) 
Here 

rio = rCo + r4 + Vi, ri = xi*el’ + xi?4’ + ri3c3’ (4.3) 

where r4’ is the radius-vector of the center of mass of the elastic system, t4 the radius- 
vector of the i th point of the rigid system relative to its center of mass, and the basis 

ej’ is not known in advance. The coordinates 246 have the same values as in (1.2). 

The generality of (2.1) and (2.3) is identical. This is easily shown for small elastic 

displacements, and under the assumption that the basis et’ is obtained from the basis ej 
by rotation through a small angle 43. The last assumption does not diminish the gener- 
ality of the deduction since it can be considered that the assigned motion of the basis 
ej is close to the motion of the basis ej’ ; the smallness of the elastic displacements is 
essential and will be utilized later. 

Setting r4 = p4 + 8 x pfr we equate the right sides of (2.1) and (2.3.1) ; we hence 

obtain 
Vi = - rCO + pea - r4 + ~4 + ui 

It follows from (1,4,2), (1.2) and (2.3.2) that 

Xmfrl = 0 (2.4) 

LJ tilizing this, r,” and 9 can be expressed explicitly in terms of Pi”, pi, U1. No con- 
straints are hence imposed on either Ui or vi . The equivalent generality of both repre- 
sentations of the elastic displacements is hereby proved. 

If all the constraints in the system are elastic, i. e. if there are no absolutely rigid 

constraints among them, the system has 3N degrees of freedom. Six of them refer to 
the motion of the basis Ed’ and the remaining 2N - 6 to the elastic motion (for a 
linear system all of whose points are located on one line, five degrees of freedom cor- 

respond to the motion of the basis ej’ and 3N - 5 to the elastic motion). 

Let us introduce generalized elastic coordinates qh(t) as follows: 

Vi = qA b,, (2.5) 

Here, as everywhere below, summation is assumed over repeated Greek subscripts, i. e, 
over all the degrees of freedom in the elastic motion. The vectors bib (see Sect. 3) are 
constructed so that they satisfy the equalities 

Zm,bi, = 0, Zmiri x b,, = 0 (2.6) 

Setting qh =I, qw = 0 (p # 1Lf into (2.5), we obtain V4 = bix. Hence, the vectors bj, 
can be called the unit elastic displacements, 
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3, Unit slrttfo dirplrosmentc, Let us prescribe as many linearly independ- 
ent groups of forces fi, as the system has degrees of freedom in elastic motion, where the 
forces f,, are statically equivalent to zero 

Xii, = O, Xr, x f,, = 0 (3.1) 

Linear independence means that there are no numbers gA, at least one of which is not 

zero, such that g,f iA = 0. 

Let us show how the fib can be prescribed for some systems, where this process is sim- 
plest. A formalized method of evaluating the f,,*for systems of arbitrary form is indi- 

cated in Sect. 7. 

We direct the unit vector er’ in a linear system along a line on which all the material 

points lie, and the unit vectors e2’, e3’ in some orthogonal directions. Applying forces of 

equal modulus but opposite direction to each pair of adjacent points, we obtain N - 1 

groups of forces fik. Furthermore, we apply three forces statically equivalent to zero 

parallel to ez’ to every three adjacent points, and we obtain N - 2 groups of forces fi,. 
The same operation in the plane containing es’and ei results in the construction of 

N - 2 groups of forces fi,.. In all we obtain 3N - 5 groups of forces fi, , which is how 

many degrees of freedom the system has in elastic motion. 
In a plane system all of whose points are located in one plane and no three points lie 

on one straight line, we apply forces of equal modulus and opposite direction to each 
pair of points whose numbers differ by one and two units, and we obtain 2N - 3 groups 

of forces f,, lying in the plane of the system. In order to obtain N - 3 groups of forces 
PiA, of the normal planes of the system, let us consider four arbitrary points and let us 

apply a group of forces,statically equivalent to zero, to them. Then we form a new 

quartet of points, one of which is not in the first quartet, and we apply a system of forces 
equivalent to zero to these four. Extracting further quartets of points so that one point 

in each is in none of the previous quartets, we obtain N - 3 groups of forces fix. 

In a three-dimensional system in which no three points lie on one straight line, we 
apply equal and opposite forces to pairs of points whose numbers differ by one, two and 

three units, and we obtain 3N - 6 groups of forces f,, which possess the required proper- 

ties, 
Let us form the vectors 

8 Mf *a = x 
4 Q 

(3.2) 

~rthonorma~zing the pa we obtain the unitary displacements b,,. Let us require that 

Zmibi,bi, = 
M, 5=lt 

0. k#p 
(3.3) 

Let us apply the Gram-Schmidt process to orthonormalize the Bib with weights ml and 
let us use the representation 

$ih = Crabjt $- Cshbis f * * * + ‘Ahbih 
(3.4) 

The scalars C,,are determined from the conditions (3.3). 
The system of unitary displacements obtained is complete by construction so that any 

vectors Bj satisfying the conditions 

XmiBt = 0, Zm,ttxB, = 0 

can be represented as linear combinations of b,,. 
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Let us note that the unit displacements depend on the configuration of the rigid system, 

and on the mass distributed therein, but are independent of the stiffnesses of the elastic 

constraints. 
In determining the b,, y b the method described here there is no need to determine 

the position of the center of mass and the directions of the principal axes of inertia; in 
the general case these operations are necessary. 

4. Kinetic energy, We obtain the velocity of the i th point by differentiating 

the radius vector rot with respect to the time t in conformity with (2.3.1) 

d’tO _ reo’ + -- 

dt (4.1) 

The first member on the right side is the velocity of the center of mass of the elastic 

system. Moreover 
d’i -_ -- 
dt 

‘i’ + W“ 

Here the first member in the right side is not zero if the configuration of the rigid 
system changes with time. Let us consider the configuration of the rigid system to be 

invariant, and therefore, let us set r’f = 0. 
Let us consider the angular velocity of the rigid system o to be small. Let us neglect 

the small displacement V, in the expression for the velocity of the t th point 

dr,” 
- =r,o’+f0x(r,+V,)+V, 

dt 

as compared with the finite quantity rl and let us arrive at the following expression: 

dr,” 
A = ree’ + a, x ‘4 + vi* 

dt 
(4.2) 

It is easy to obtain the equalities 

GltVi = 0, xrn,r,xV; = 0 (4.3) 

from (2.2), which denote that under the definition of the elastic displacements taken 

here the momentum and kinetic moment relative to the center of mass of the elastic 
motion are zero. 

Taking account of (4.3) as well as (2.4), let us represent the kinetic energy of the 
elastic system as T = ‘/~MT:‘~ + l/aTZmi(o X ‘t)’ + ‘/nZmtV;’ 

By using (2.5) and (3.3) we transform this as follows: 

T = %Mr~” + %Zq(ab X q)’ -I- %Mqia (4.4) 

The first two members in the right side are the kinetic energy of the rigid system, the 

last member is the kinetic energy of elastic motion. 
The generalized momenta in the elastic motion are 

@T 
7 = Mq; 
@h 

(4.5) 

The generalized momenta in the motion of the basis BJ’ are calculated exactly in the 
same manner as in the motion of a solid. 

6. Potent181 anorgy rnd equrtiona of motion, Let us define the unit 
forces 

(5.1) 
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It is easy to see that the pii, are statically equivalent to zero. 

Let us note that the forces pik produce work on the unit displacements b,, but not on 
the b,,(p # A). This follows from (3.3). 

Let US apply some system of forces Pi, statically equivalent to zero, which must be a 
linear combination of the forces pta 

to the points of the system. 
pi = ‘APih (5.2) 

The application of the forces Pi causes the appearance of elastic displacements Vi = 

= Q~bib. The work of the force Pi on the displacements Vi equals the strain potential 
energy of the system II = l/zZskcI,Pi,biv,’ II= V2~~4 & (5.3) 

Here (5.2). (2.5) and (3.3) are taken into account. 
Applying the forces pih to the elastic system we calculate the displacements 

Qh = %,$ (5.4) 

Here air are the Maxwell coefficients fl. 21. If the elastic constraints are rods, the 
dipare evaluated by the Mohr formula cl, 21, which can be written symbolically as fol- 
lows : 

6,,+L 
e B 

Here T,, T, are the states of stress in the elastic constraints upon the application of 
the unit forces piA and pi,,, B , respectively, of the constraint stiffnesses. The Mohr for- 
mula can be utilized even when the elastic constraints contain not only rods but also 
plates. The Maxwell coefficients are evaluated by applying a static loading. 

Solving (5.4) for sp, we obtain sp = cpaqi, where cILx are the influence numbers which 

can be obtained as elements of the matrix c = il cpa I] inverse to the Maxwell matrix 

J = I] ahk ]I . Substituting the values found for s into (5.4), we obtain 

II = ‘12 c).pQA9, (5.5) 

If the potential energy of the system depends on its position in some force field, com- 

ponents corresponding to the potential energy of a solid, and therefore, independent of 

the elastic generalized coordinates qA , are introduced into the expression for II . 
The generalized forces in elastic motion are 

arp 
QA= ZRi aqh 7 Q,, = XRibi, (5.6) 

Here (2.3.1) and (2.6) have been taken into account, and Pi are external forces. The 
generalized forces corresponding to motion of the basis EJ’~ are determined exactly in 

the same manner as in motion of a solid. 

According to (4.5) and (5. 5) the equations of elastic motion are 

Mq,” + ch,& = Qi (5.7) 

The equations of motion of the basis P,’ do not differ from the equations of motion 

of a solid. 
If the external forces are independent of the elastic displacement, the equations of 

motion of the basis ej’ , and the equations of elastic motion separate. If it is necessary 

to take account of energy dissipation, a dissipation function can be introduced [3]. 
The constraint must be considered absolutely rigid if there are no elastic displacements 

upon applying the forces lbij, according to (5.1). If the system has k rigid constraints, 
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then its total number of degrees of freedom is 3N - k, there are just as many equations 
of motion. There is evidently no need to construct forces Pi,. corresponding to rigid con- 
straints, and to determine the Maxwell coefficients from them. 

6. Independence of the slABtic motion from the relectlon of 
the unit elr~tfc dfcplrcementr. The vectors bib can be chosen differently 

for the same system. Let us show that the elastic motion is independent of the selection 

of b,,. 

Besides the complete system bi, let there be another complete system biA+ which can 

be represented as a linear combination of the bi, 

b. +=a Ia b. hP w (6.1) 

Both systems of vectors bi:, and bib+ are orthonormalized according to (3.3). From 

the equalities 

we have, by taking account of (3.3) 

%J$” = 
1, *)l=p 

6, X#P 
(6.2) 

Let us introduce the matrix a = 11 ah,, 1 and let us represent (6.2) as aa’ = E, where 
a’ is the transpose of a, and E is the unit matrix. Hence a’ = a-*, so that the matrix a 

is orthogonal. The forces piX and pii+ generated by the vectors b, and brx* are con- 

netted by the equalities 

There is a dependence 

or 
0’ = a6a’ (6.3) 

between the Maxwell coefficients aXr and dAp*. 

Inverting (6.3). we obtain 
c* = aca’ (6.4) 

It is easy to see that the column matrices of the generalized elastic forces Q and Q* 
satisfy the equality Q* = aQ (6.5) 

Introducing the column matrices of the generalized elastic coordinates q and q*, we 

obtain the elastic motion equations obtained by proceeding from b,, and bib* 

Mq” + cq - Q = 0 (6.6) 
Mq+” + c*q* - Q* = 0 (6.7) 

This last equation can be transformed into 

a(hf(a’q+)” + c(a’q*) - 91 = 0 

Comparing this with (6.6). it is easy to see that the solutions of (6.6) and (6.7) are 
connected by the equality q = a’q+, qh = aph qp* 

According to (2.5) the elastic displacements are Vi = gAbi,. Simultaneously 

V, = a,4qP*bih = qp+bip+ 

Therefore, the elastic displacements Vi are identical in both cases, and therefore, are 
independent of the selection of the b,,. 
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7, Formrlissd method of determining the unit eirttlc dhplrcs- 
m8nti. Let us consider the transformation of the arbitrary external forces Rt applied 
to a rigid system. Let us represent 

R,=S,+F, (7.1) 

where the forces S1 have the same resultant R and principal moment & relative to the 

center of mass as the forces R, 

XS, = ZR, = R, I;rixSi = Xr,xR, = L c (7.2) 

Let us impose also the requirement that the stress resultants and elastic constraints be 

zero upon application of the forces St. It follows from (7.1) and (7.2) that the forces 

Pi producing the stress resultants in the constraints are statically equivalent to zero at 
each instant. 

Let us examine the motion of a system subjected to the force S,. If there are no stress 

resultants in the constraints, each point moves without interaction with the rest. Its equa- 
tion of motion dz 

mi x tie= S, 

can be represented by using (2.3.1) as 

%ri 
0’* 

+mi & doxrr=s, 

Summing all these equalities with respect to i and taking account of (2.4), we obtain 

&fre”” = R 

The equation of motion of the i th point becomes 

s, = !$R + mte’xri + miee(ruxrc) 

In case the angular velocity of the basis e,’ is small, the last term in the right side 

can be neglected and we obtain 
s*= (7.3) 

Multiplying both these equalities vectorially on the left by ri and summing over all 

points of the system, by taking account of (7.8) and (2.4) we obtain 

&r+r*x(o’xrJ = L, 

from which 0)’ is easily expressed in terms of L,, i.e. in terms of the external forces 

* L L L 
a =~e~‘+C2ep’+CSeg’, 

I1 11 la 
L, = Lc.e2 + L,.e2 + Leaed 

Here I& are the principal central moments of inertia of the rigid system. 

The forces Si are determined by the equalities (7.3) and the forces Ff can be found 
from (7.1) : F1 x Ri - Si. 

To construct the formalized process to determine the unit displacements bi, for an 
arbitrary system, we determine 3N systems of external forces R,(k) (i = 1,2, . . . . N; 

P = 1,2,..., 3N) such that each system consists of the single force I@) applied to 
any point in the direction of one of the unit vectors ej’, and there is no identical pair 
among the systems Rip). Evidently all the vectors fix, &, b,,. Pa introduced above are 
linear combinations of the forces Rip), 

Let us determine the forces Sip) for each system of forces Rip), and then 

F,W = f ic (7.4) 

Furthermore, let us determine the vectors &, by using (3.2). and then by orthonormal- 
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izing the pa we find the bi,. Upon execution of these calculations cases are certainly 

encountered when the scalars c,, in equalities of the type (3.4) turn out to be zero. 
This means that fia is a linear combination of the bi, (A > p). In such cases the vec- 
tors bik should be omitted and the next vectors bi, h+l should be considered. 
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Sufficient conditions are presented for the stability of rotational motion of a variable- 

mass body in a central Newtonian force field. The equations of body motion around a 
fixed point are written under assumptions made by M. Sh. Aminov. 

The Chetaev method, as well as the V. V. Rumiantsev theorem on the stability of mo- 

tion relative to part of the variables, are used in investigating the stability of rotational 
motions of a solid in the Lagrange case. 

Let us consider a symmetric body (A = B) of variable mass on whose axis of symmetry 
a gyroscope with kinetic moment lo is placed and there is the center of mass of the body 

at a distance ZJr) from a fixed point 0. 

If the body is in a central Newtonian force field, the Euler-Poisson equations, under 
the assumptions considered in a-31, have the form 

P'=(1--6)qr-vq+'/zurz-~((i--)rlrr (V=10/A) 

q'zz(6 --)Pr+v- ‘/z 071 t- p (1 - 6) ws, r’ = 0 (6=C/A) (0.U 

rl’ = v2 - QTS, 72’ = PTS - q1, Ta’ = PT1- pya (a = 2MgZ, /A) 

Here v, 6, a are some functions of time, P is a constant. Evidently, one of the solu- 
tions of (0.1) P = q = y1 = yz = 0, r= ro, y3= 1 (0.2) 

corresponds to body rotation around an axis of symmetry coinciding with the direction 
to the center of attraction, at a constant angular velocity. 

1. We obtain sufficient conditions for the stability of the motion (0.2) from the equa- 
tion for the angle of nutation 9. It follows fromtthe equati$s of motion (0.1) 

~~+q'+dTs-~(i-8)T~~--Srado -+a~=C1 

0 0 


